

Extended information of product quality and their variability in paper board production using online measurement systems

Mikael Magnusson, Thomas Grahn, Peter Hansen and Aron Tysén

Acknowledgement

- Financed by SIP PiiA (VINNOVA)
- Participating companies
 - ABB
 - BillerudKorsnäs
 - Holmen
 - KTH, Royal Institute of technology
 - RISE, Research Insitutes of Sweden
 - Smurfit Kappa
 - StoraEnso

Making invisible information visible

- Shorter time to operator action
- Increased performance stability and prediction
- Proactive machine maintenance
- Reduced product variations and less returns

From emitted radiation to temperature

Grammage or moisture

- More than one reason for non-uniform temperature distribution.
 - I.e. temperature cannot immediately be interpreted as a grammage variation, but will also be influenced by the amount of moisture present
- Need to de-couple moisture and basis weight when modelling

Mill trial

- Methodology developed at 6 different mills with varying conditions and infrastructure
- Collection of
 - WIS-images (grayscale CD strips of transmitted light)
 - QCS-data (point-wise moisture and basis weight, ~MD strip)
 - IR-film (area measurement of IRemitance)
- IR is used to complement the data where measurements are not available over the complete area

Three models in increasing complexity

Model 1: basis weight in CDstrips from QCS and WIS Model 2, basis weight- OR moisture maps from IR and QCS

Model 3, basis weight <u>and</u> moisture maps from IR, QCS and WIS

IR-camera for synchronisation

On-line IR-camera and QCS

On-line IR-camera, QCS and WIS

IR+WIS

IR+QCS

IR+QCS+WIS

Data set: IR

IR Analysis

- IR data processed in CD-strip (red line)
 - Process time: 3 min for 7 min IRfilm
- Calibration of CD coordinates and scale
 - Note distortion from IR-lens and image depth can cause discrepancy in scale
- Data collection in 100 or 120 Hz

Data set: Temperature map

- Full resolution of IR-data overlapping QCS data set and complementary WIS
- Pixel size: 112.8 mm/pix in MD and 7.34mm/pix in CD
- 4.8 km board at 7.18 min production time

Data set: QCS

QCS analysis

- QCS-data (MD strip)
 - Moisture
 - Basis weight
- Moisture bump at stationary QCS used for synchronisation of lag, time and MD coordinate

Data set: Moisture and basis weight

- Resolution 1000 pts/s
- Both moisture and basis weight
- Synchronized with IRtemperature at the QCS measurement position

Data set: WIS

WIS-information

- Matrix-system of complete machine width close to pope at very high resolution, but patch wise in MD
- Assumption: grayscale information of transmitted light approximately proportional to basis weight
- Positioned after coater in the machine
 - Note that the physical correlation between IR at the drier and WIS after coating is unknown and serves as a proof of concept in this case

Ca: 17000 px

WIS-data analysis

Some adaptions needed for WIS-data

- Edge detection: CD-coordinate
- **Image stitching:** image transitions adjusted in amplitude then according to the difference commutatively
- **Normalisation**: due to varying/unknown gain between cameras.
 - Preserves information between neighbouring pixels
 - However, large scale variations are lost IF there are unknown image overlaps

Synchronisation: very difficult without a proper marker (detectable on two systems)

Modelling for extended information

QCS and IR at ROI

- After synchronisation, and resampling to the same resolution
 - Full IR resolution: 100 pts/s
 - Full QCS resolution: 1000 pts/s
- Overlapping IR and QCS signal in about 450s
- Synchronised data used in a linear regression model for prediction of
 - Either moisture
 - or basis weight at the entire area

2D map with calculated moisture content

WIS-basis weight, QCS basis weight and IR

- **MD**: Moisture bump is clearly captured in both basis weight and moisture to temperature
- **CD**: Basis weight over CD (calibrated via QCS for each strip) collected as data to model
 - Parabolic model, $w(IR(CD, t_{WIS}))$ between basis weight CD-profiles for each WIS-image and IR in a least square sense (14 WIS vectors)
 - To decouple moisture and basis weight models

Basis weight and moisture map calculated from IR, WIS and QCS

Model assumptions

- Correct synchronisation
- Gray scale variations in WIS at QCS position and time is assumed to correspond to the grammage variations measured by the QCS
 - and, WIS grayscale is linearly proportional to the basis weight in the same image
- Basis weight captured in 2 degree polynomial of the IRtemperature
- Moisture content is a function of this modelled basis weight, measured moisture content (at QCS) and IR-temperature in a multivariate least square regression

Granger causality test

- Simple test of predictability
- Here: 35% of the data used as input (marked yellow)
- Model prediction in orange compared to measurement (blue)
- Captures variations
 - Large scale (bump) very good
 - Small scale variations less so

Results

Thus 2D-maps can be constructed based on QCS and WIS independently

Calculated basis weight 0.5 279.5 E 1 O 1.5 Web coordinate 277.5 500 5000 Web coordinate, MD [m] Streak in MD Ca 70-110m

Predicted coefficient of variations - moisture

- Predicted moisture map, 5.5 km
- Variations can be identified in streaks (CD) or periodic disturbances (MD) within
 - a certain window
 - or complete production as example

Frequency analysis (FFT) MD-average, moisture content

- The frequency of variations can be determined by using discrete
 Fourier transform
- 285 +- 15 m (25 s)
- 232 +-8 m (20 s)
- 190 +-6 m (17 s)
- 84.8 m (7,5 s)
- 53.2 m (4.7 s)
- 22.6 m (2.0 s)
- 15.1 m (1.3 s)
- 1.12 m (0.1 s)

Conclusions

- A methodology and practice has been developed to treat IR, WIS and QCS measurements in a model
- The method has been demonstrated in case studies (one presented here) and could in principle be used as a soft sensor, effectively extends information (using model predictions) to the whole production area
- The data was also shown in terms of property variations to demonstrate alternative data visualisation
- The developed methodology shows great promise to capture variations (both small and large)
- As errors in synchronisation and/or model assumptions are immediately detected in the correlation analysis the risk of false predictions are minimized

Note that there are a number of practical issues related to mill specific infrastructure and data structures that infers limitations on the ease of implementation, some of which has been discussed in this presentation

